The generator matrix

 1  0  1  1  1 X^2+X  1  1 X+2  1  1 X^2+2  1  1 X^2+2  1  1 X+2  1  1  1  1  0 X^2+X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2 X^2+X+2  X  1
 0  1 X+1 X^2+X X^2+1  1 X^2+2 X^2+X+3  1 X+2  3  1  0 X+1  1 X^2+X X^2+1  1 X^2+2 X+2 X^2+X+3  3  1  1  2 X^2+X+2 X^2  X X+3 X^2+3 X^2+X+1  1  2 X^2+X+2 X^2  X X+3 X^2+3 X^2+X+1  1  1  1  0  0
 0  0  2  2  0  2  2  0  0  0  2  2  2  0  0  0  2  2  0  2  2  0  2  0  2  0  0  2  2  0  0  2  0  2  2  0  0  2  2  0  2  0  0  0

generates a code of length 44 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 42.

Homogenous weight enumerator: w(x)=1x^0+46x^42+50x^43+286x^44+108x^45+16x^46+2x^47+1x^52+1x^54+1x^66

The gray image is a code over GF(2) with n=352, k=9 and d=168.
This code was found by Heurico 1.16 in 0.031 seconds.